If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-26x+43=0
a = 1; b = -26; c = +43;
Δ = b2-4ac
Δ = -262-4·1·43
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-6\sqrt{14}}{2*1}=\frac{26-6\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+6\sqrt{14}}{2*1}=\frac{26+6\sqrt{14}}{2} $
| 3)5x+1)=48 | | 1/3x+13=49 | | 180-94-29=x | | 4x+14=8x-32 | | -15(n+1)=-4n(n+11) | | -31+12x=9x+41 | | 2(3+8x)=5(2+4x)-28 | | 330=2w+4w-14 | | -157+12x=4x+43 | | -14-x=-9-5x4x | | (x/5)+(x/8)=9/8 | | 199+2(x-7)=2 | | x+8.4=4.3 | | -3(2m-8)=2(m=14) | | 4v-13-10v=12+24v+5 | | -214+4x=110-8x | | 125.30=0.06x+x | | -(x+5)-3x=x+4 | | 100/x=2.7 | | 4.12=x-11.9. | | 10k−6=4 | | 3/4n+16=31 | | 2x-5=12x+20 | | 2(x-1)-5(x+3)=2 | | -159+11x=81-x | | -5v+10= | | 5(4+1)=9(x-3) | | 7-6x=7x | | -35+10x=16+13x | | 2.8=0.8x+3 | | x•Y=24 | | 1-8n=3n-10 |